среда, 28 сентября 2011 г.

Булатная сталь

Дамасская сталь - первоначально то же, что и булат; позднее - сталь, полученная кузнечной сваркой сплетенных в жгут стальных полос или проволоки с различным содержанием углерода. Название получила от города Дамасск (Сирия), где производство этой стали было развито в средние века и, отчасти, в новое время.

Булатная сталь (булат)
 сталь, благодаря особой технологии изготовления отличающаяся своеобразной внутренней структурой и видом («узором») поверхности, высокой твёрдостью и упругостью. С древнейших времён, первые упоминания встречаются ещё у Аристотеля, используется для холодного оружия — клинков мечей, сабель, кинжалов, ножей и др.


История 
Булат производили в Индии (под названием вуц), в Средней Азии и в Иране под названиями табан, хорасан, фаранд, в Сирии — дамаск. Аль-Бируни приводил некоторые сведения об его производстве: «Второй сорт получается, когда в тигле указанные вещества плавятся неодинаково и между ними не происходит совершенного смешения. Отдельные частицы их располагаются вперемешку, но при этом каждая из них видна по особому оттенку. Называется это фаранд. В мечах, которые их (два оттенка) соединяют, он высоко ценится». На Руси были знакомы с восточным булатом и изделиями из него, есть также сведения о закупке булата для производства оружия. Для его классификации использовались такие термины, как красный и синий булат, красное железо. В России литой булат, аналогичный старинным восточным образцам, был получен на Златоустовском заводе под руководством русского горного инженера, начальника Златоустовских заводов генерала-майора Павла Петровича Аносова. Аносов начал заниматься булатом в 1828 г. по поручению Горного ведомства. После огромного числа опытов были получены образцы булатных клинков и слитки булатной стали. В отчётах Аносова описываются и воспроизведённые им способы получения классической кованой дамасской стали, но делается вывод о том, что это нетехнологично. В 1839 г. оружие и другие изделия из русского булата демонстрировались в Санкт-Петербурге, в 1841 году работа Аносова «О булатах» была представлена на Демидовскую премию. 


Описание
Булат — собирательное название для твёрдых и вязких сплавов железа и углерода. Химически булат отличается от стали количественным содержанием углерода. По этому показателю булат близок чугунам. Но физически он сохраняет ковкость низкоуглеродистых сталей и ощутимо превосходит последние по твёрдости после закалки. Такие свойства более связаны со структурой металла, нежели с химическим составом (по аналогии с чистым без примесей графитом и алмазом, у которых химический состав идентичен, но физические свойства различны). Таким образом, один только химический анализ не позволяет определить отношение металла к булатам. Булат требует отличных от стали способов обработки (ковки, закалки) и может быть повреждён неправильной термической обработкой, обратившись обычной сталью или нековким чугуном. Тем не менее булат может быть доведён до расплавления и после остывания остаться булатом, или, как в случае с дамаском, может быть многократно прокован и сварен кузнечной сваркой сам с собой или с другими булатами и сталями. Из множества сталей (но далеко не из всех) может быть получен булат практически без изменения химического состава исходного материала, но способность сплава приобрести в процессе кристаллизации характерную для булатов структуру сильно зависит от лигатуры сплава и булаты не получатся из высоколегированных сталей, а из легированных, если получаются, то только низшие сорта булатов.

Из-за особенностей приготовления и обработки булаты в производстве существенно дороже большинства обычных сталей. Поэтому изделия из булатов, которые можно купить или заказать, в большинстве своём представляют собой в лучшем случае низкосортные, а в худшем — декоративные (или псевдо-) булатыМногие современные стали превосходят булаты по твёрдости, многие — по износостойкости, но ни одна не превосходит по совокупности параметров, таких как упругость, хрупкость, способность затачиваться до бритвенной остроты и долго ее держать, сопротивление коррозии, ковкость и т. д. Высокого сорта булат является непревзойдённым образцом совершенства металла, поэтому до сих пор сохранились немногочисленные энтузиасты, владеющие искусством его приготовления и обработки. 




Технология
Сплавление железных руд с графитом, или восстановление и соединение железа с углеродом; сплавление железа при доступе углей, или соединение его предварительно с углеродом и восстановление его посредством закиси железа или с помощью продолжительного отжигания без доступа воздуха; и, наконец, сплавление железа непосредственно с графитом, или соединение, его прямо с углеродом.

Первый, способ требует чистейших железных руд, не содержащих кроме закиси железа никаких посторонних примесей, в особенности серы. Но подобные руды встречаются чрезвычайно редко, притом и потеря в графите весьма значительна, а успех в насыщении железа углеродом не всегда в зависимости от искусства. Сверх того, руды, по малой относительной тяжести, занимают более объема, нежели железо, и, заключая в себе металла около половины своего веса, уменьшают количество продукта при одной вместимости с железом до ¼ и даже до ⅛ при одних и тех же прочих расходах. Из этого видно, сколь сей способ дорогостоящ. Таким образом, трудность отыскать в совершенстве первые материалы, случайность соединения железа с углеродом в надлежащей пропорции и дороговизна соделывают сей способ не доступным для введения в большом виде. Но он знакомит и с способом древних и с причиной драгоценности совершенных азиатских булатов, ибо древние скорее могли попасть на способ простой, нежели сложный. Употребление тиглей столь же древне, как и известность золота: ничего не могло быть ближе для древних алхимиков, как испытание плавкой всех тел, похожих по наружному виду на металлы, и в этом случае для них ближе было испытывать графит, нежели для нас, привыкнувших думать, что он не плавится и может быть полезен токмо в тиглях и карандашах.

Второй способ не мог быть введен в употребление по затруднительной ковке при значительном содержании углерода, что происходит, по моему мнению, от недостаточной чистоты кричного железа и от затруднения очистить оное совершенно помощью железной закиси. Железо может быть улучшено способом, употребляемым в Японии и вообще в Азии,- продолжительным сохранением в воде или земле, а очищение угля едва ли будет столь совершенно, как в графите.

Третий способ введен уже в употребление, но как литая сталь для сохранения ковкости не может заключать много углерода, то она и составит особый разряд литых булатов, годных на выделку дешевых изделий: ибо пуд литого булата обходится около 10 рублей.
Четвертый способ, как почитаемый мною удобнейшим и соответственнейшим при наименьших расходах, к получению настоящих булатов.

— П.П.Аносов. "О булатах" 

В СССР также проводились эксперименты с булатом, описанные Ю. Г. Гуревичем. Советский способ заключался в том, что железо или малоуглеродистую сталь расплавляли в индукционной печи, нагревали до 1650 °C, раскисляли кремнием и алюминием, после чего добавляли углерод в виде графита. В результате получали чугун с 3—4 % содержанием углерода. После эта жидкость немного охлаждалась и в неё порциями подавалась стружка из малоуглеродистой стали или железа, в сумме 50—70 % от массы чугуна. Готовый к отливке расплав находится в кашицеобразном состоянии — в нём взвешены эти частицы. При кристаллизации получался булат с высокоуглеродистой матрицей, в которую вкраплены низкоуглеродистые частицы. Эти частицы науглероживались только снаружи, а внутри сохраняли небольшое содержание углерода (от 0,03 до 1 %, в зависимости от способа охлаждения). Среднее же содержание углерода в матрице составляло около 1,5 %. Для придания дополнительных свойств могут быть добавлены легирующие элементы (например, никель и хром придают булату коррозионную стойкость). Для получения цветастых булатов обычный булат оксидировался при 200°—400 °C, что в результате давало сиреневые узоры на фоне золотистой матрицы.


"НАСТОЯЩИЙ" БУЛАТ ИЛИ СТАЛЬ.КОТОРАЯ "КРЕПЧЕ...САМОЙ СЕБЯ" Обращает на себя внимание то обстоятельство, что, как следует из описаний Аль-Бируни, неоднородность высоко ценимого "фаранда" вполне устраивала восточных оружейников древности. Несмотря на то, что им была известна полностью расплавленная сталь "1 сорта", мечи они предпочитали ковать все же из узорчатого металла, а однородную сталь пускали на напильники. Это объясняется тем, что клинки из узорчатого металла, полученного литьем или кузнечной сваркой, как правило превосходили по своим боевым свойствам клинки, откованные из такой же по химическому составу, но без узорчатой стали. Причина этого превосходства заключается главным образом в процессах, происходящих при ковке металла с резко неоднородной композитной структурой.
В наиболее общем виде прочностные характеристики узорчатого металла определяются по среднему содержанию углерода. Так же, как и в обычных сталях, прочность и твердость булата возрастает с повышением содержания углерода и других легирующих элементов. В старину качество металла определяли по внешнему виду узора на его отполированной и протравленной поверхности. В узоре, помимо цвета и формы, обращали внимание и на величину его фрагментов — на толщину и длину линий и завитков, интервал между этими линиями и т.д. По этим признакам можно довольно точно определить как химический состав композита, так и соотношение композитов в общем объеме металла. Ясно, что чем больший объем занимают прочные, высокоуглеродистые волокна или слои, тем прочнее и тверже весь композит. И наоборот, чем больше железа в составе композита, тем мягче и эластичнее он будет.
Определение химического состава по узору — это самый простой, понятный даже не знатоку металлообработки и, скажем так, обычный способ определения качества металла клинков. Обычный потому, что не учитывает особого влияния вида и степени неодно-родности, т.е. узора, на характер упрочнения булата, свойства которого далеко не полностью определяются его хим. составом. Если современной суперстали придать узорчатость и грамотно обработать, то она превзойдет по прочности...саму себя.
При исследовании узорчатых металлов оказалось, что прочность нескольких соединенных диффузионной сваркой пластин больше, чем простая сумма значений прочности каждой из них. Это объясняется тем, что на стыке слоев стали и железа образуется насыщенная дислокациями пограничная упрочненная зона с сильно искаженной кристаллической решеткой металла. Возникает и развивается это дополнительное упрочнение металла в процессе ковки композита, в результате которой происходит интенсивная пластическая деформация прочных слоев-волокон и мягких, менее углеродистых, прослоек.
Пластическая деформация происходит в результате перемещения дислокации, которые можно представить как микроскопические трещины. В мягком железе такие псевдотрещины перемещаются довольно легко, не встречая препятствий. Но дойдя до границы "сталь-железо", дислокация сталкивается с прочным слоем, встречая препятствие в виде атомов легирующих элементов, нерастворенных карбидов, а также множества ранее застрявших у это-го барьера дислокации. Происходит торможение и, что особенно ценно, накопление дислокации в пограничном слое, который служит своеобразным аккумулятором искажений. Рентгеноструктурные исследования показали, что в "изуродованной" кристаллической решетке металла узорчатых клинков отсутствуют целые группы атомов, а дислокации сворачиваются в плотные клубки.
В древности даже самые знаменитые мастера не имели точных сведений об атомном строении металла, но опытным путем они безошибочно определяли тесную связь узоров и прочности. По мнению старых мастеров, обязательным признаком высших сортов узорчатых сталей являлся сложный, спутанный узор. Действительно, в низкосортных булатах и дамасках с полосатым узором дислокации движутся вдоль слоев или волокон, не пересекая их границ и, следовательно, не накапливаясь в пограничном слое, не давая упрочнения.
В булатах высших сортов значительная часть прочных волокон располагалась под углом к оси заготовки клинка. Последующей ковкой при невысоких температурах большие объемы металла растягивались поперек границ волокно-матрица, что приводило к быстрому формированию развитого пограничного слоя и эффективному накоплению дислокации. Таким образом, в зонах металла со сложным узором образовывались своеобразные "карманы", ловушки искажений - участки с практически полностью разрушенной клубками дислокации кристаллической структурой. Видимо, не зря коленчатый тип узора булата носит в науке название лабиринтной структуры.
Понимающие суть дела мастера для формирования структуры (узора) лабиринтного типа либо туго закручивают и проковывают (иногда несколько раз) бруски сварочного Дамаска, либо насекают поверхность заготовки клинка, перемешивая поверхностные, самые нагруженные слои. В древности это широко распространен-ное формирование сложных узоров на сварочном Дамаске преследовало целью именно задействование механизмов упрочнения, общих для всех неоднородных металлов, а вовсе не имитацию ценного булата для обмана покупателя, как иногда пишут.
Наличие дополнительных особо прочных пограничных слоев хотя и главная, но не единственная причина высоких свойств узорчатой стали. Резкие границы слоев являются весьма труднопреодолимыми препятствиями для роста зерна металла, поэтому размер зерна почти всегда меньше, чем толщина слоя. При наращивании количества слоев узорчатого металла его зерна как бы перетираются, дробятся между жерновами в виде стыков слоев. Размер зерна сначала уменьшается до самого мелкого, встречающегося в обычной стали, а затем, когда размер зерна станет соизмеримым с толщиной слоя, зерну становится "тесно" в границах слоя и оно дробится на субзерна с максимальной величиной около 0,3 мкм. Границы зерен являются искажениями структуры, поэтому измельчение зерна приводит к резкому росту плотности дислокации и, следовательно, к дополнительному упрочнению металла. Что особенно ценно, упрочнение в результате измельчения зерна происходит не только без снижения вязкости, но даже с ее заметным повышением.
На вязкость металла благотворно действует и то, что нагрев заготовки под ковку нужно производить до цвета "сырого мяса", т.е. до температуры примерно 800 °С, а заканчивать ковку при "вишневом" цвете заготовки, соответствующем 650 °С. При подогреве частицы цементита растворяются лишь с поверхности и их острые грани сглаживаются. В остывающем металле цементит вновь осаждается на оставшихся нерастворенными карбидах, служащих центрами кристаллизации. После многократных циклов "подогрев-остывание" частицы цементита укрупняются и приобретают округлую форму, способствующую повышению вязкости и пластичности сверхвысокоуглеродистого волокна и всего булата в целом.
При правильной ковке булата увеличивается химическая неоднородность его структуры, поскольку скопления дислокации приводят к разрыхлению атомной структуры металла и в этих разреженных участках скапливается углерод. Атомы углерода как бы проваливаются в разрыхления кристаллической решетки железа, накапливаясь в них. Приток углерода к сильно разрыхленным пограничным слоям вызывает специфический эффект, когда диффузия направлена из зон с меньшей концентрацией углерода в зоны, изначально обогащенные им. В высокоуглеродистых волокнах концентрация углерода в виде скоплений цементита после ковки часто бывает выше, чем в этих же волокнах исходного литого композита. При этом примыкающая к волокну тонкая зона матрицы обеднялась углеродом до полного исчезновения изначально присутствующих в ней выделений избыточных карбидов.
Здесь необходимо сделать некоторое отступление и рассказать о часто упоминаемом в специальной литературе эксперименте ученых Донецкого политехнического института, в итоге которого был получен удивительный металл. Ученые задумали получить сталь непосредственно из руды, а для этого окатыши чистой руды проплав-ляли в установке электрошлакового переплава с графитовым электродом. Восстанавливаемый металл капля за каплей проходил через толстый слой жидкого шлака, почти полностью очищался от разнообразных примесей и сильно науглероживался.
Полученный металл по химическому составу представлял собой особо чистый чугун с содержанием углерода 3,5 %. Однако к удивлению ученых, этот сплав не только поддавался деформации, а отлично ковался и прокатывался! Кроме того, выяснилось, что аномальная твердость ножа, изготовленного из нового сплава, не позволяла заточить его обычными абразивами — пришлось применить алмазный круг. Мне говорили, что твердость его достигала 80 HRC при вязкости сырой инструментальной стали. Узоров на металле не было, но сами исследователи сочли, что получили один из сортов булата. Амери-канцы подобный особо чистый сплав называют "сорель-металл".
Подробные исследования показали, что столь высокие свойства объясняются необычным состоянием углерода в металле. Вследствие высокой чистоты сплава углерод не выделился в виде карбидов или графита, как это должно быть при подобном химическом составе, а находился в особой, растворенной форме. Сверхвысокая концентрация растворенного углерода в холодном металле и позволила добиться сверх твердости и сверх прочности без снижения пластичности.
Можно предположить, что в такой же аморфной форме находится углерод и в разрыхленной пограничной зоне прочных волокон булата, где происходит взаимосвязывание дислокации и растворенных атомов углерода. Степень его концентрации здесь может превышать среднее содержание не только в композите в целом, но и в самом сверхуглеродистом волокне. Прямые аналогии с днепропетровским чудо-сплавом позволяют сделать вывод, что прочные сверхуглеродистые волокна булата находятся как бы в броне из еще более прочного и высокоуглеродистого металла, отличающимся особой твердостью и вязкостью.
Сверхконцентрация углерода в наиболее деформированных объемах приводит к тому, что в процессе "маятниковой" ковки с частыми подогревами возникает и частично стабилизируется практически аморфное строение металла. Это происходит потому, что при нагреве и охлаждении происходит перестройка кристаллической решетки гамма-железа в альфа-железо. В момент перестройки металл имеет некристаллическое, как бы аморфное строение, а сверхконцентрация углерода и многочисленные дислокационные и иные искажения атомного строения частично "замораживают" такое его состояние.
В этой связи уместно вспомнить о "металлическом стекле", получаемом при охлаждении расплавленного металла с квазисверхвысокими скоростями. При таких скоростях охлаждения кристаллическая решетка не успевает сформироваться и фиксируется, "замораживается" хаотичное расположение атомов, отчего такой материал и на-зывают "металлическим стеклом" или аморфным металлом. Если такое "стекло" нагреть, то атомы металла приобретают подвижность и кристаллическое строение восстанавливается, точнее, возникает вновь. Причем не мгновенно по всему объему, так что на определенном этапе структура металла представляет собой смесь сверхмелких кристаллов и аморфного материала — так же, как и в булате.
Интересно то, что некоторые "металлические стекла" после нагрева и начала распада имеют крайне высокую твердость, доходящую до 1200 HV, т.е. превосходящую даже твердость цементита (1000 HV). Таким образом, в результате правильно проведенной ковки и закалки в булатных клинках высшего качества формируются перенасыщенные углеродом микрообъемы с практически аморфной структурой металла, в результате чего достигается твердость и вязкость, превосходящая эти свойства не только обычных железоуглеродистых сплавов, но также и узорчатых металлов, не содержащих в своей исходной структуре сверхуглеродистых участков.
В итоге, после грамотно проведенной ковки, структура литого булата высшего сорта состоит из мелких округлых частиц цементита, неравномерно распределенных в матрице, состоящей из ультрамелких равноосных зерен. Причем и прочное волокно от матрицы, и сами зерна матрицы отделены друг от друга некристаллическими, полуаморфными участками с очень высокой плотностью дислокации, что делает структуру металла похожей на мокрый, пластичный песок, в котором твердые округлые песчинки разделены тонким слоем воды.
При изгибе клинка зерна металла как бы скользят, поворачиваются как на шарнирах относительно друг друга в вязкой среде межpзеренного материала, не искажая дополнительно его и без того искаженную кристаллическую решетку. Этим во многом и объясняется очень высокая эластичность булатных клинков, позволяющая сгибать их дугой. Кроме того, коленчатый узор способствует тому, что действию нагрузки в первую очередь поддается вязкая матрица, а упругодеформированное прочное волокно при снятии нагрузки возвращает клинок в исходное состояние.
П.П. Аносов писал, что "...как оказалось по моим опытам, правильно откованный и закаленный шпажный клинок из хорошего булата не может быть ни сломан, ни согнут до такой степени, чтобы потерял упругость: при обыкновенном гнутье он выскакивает и сохраняет прежний вид. А при усиленном, например, наступив на конец ногой и загибая его под прямым углом, он не сломается, а будучи выправлен, не потеряет прежней упругости; при этом булатный клинок может быть тверже всякого клинка, приготовленного из стали."
Что же такое "настоящий" булат? Главным признаком, на мой взгляд, является не химический состав и тем более не способ производства, а крайняя энергетическая насыщенность атомной структуры металла. Эта насыщенность проявляется в сверхвысокой плотности дислокации, приводящей, в свою очередь, к сверх мелкозернистости и наличию объемов металла с аморфной структурой. Известно, что обычный металл может накапливать в своей структуре до 10% энергии деформации, остальная часть рассеивается в виде тепла. Можно утверждать, что в булате доля поглощаемой энергии выше. И выше намного, поэтому "настоящий" булат — это особое, высокоэнергетическое состояние металла.



Нержавеющая сталь

Нержавеющая сталь - легированная сталь, устойчивая к коррозии на воздухе, в воде, а также в некоторых агрессивных средах. Наиболее распространены хромоникелевая (18% Cr b 9%Ni) и хромистая (13-27% Cr) нержавеющая сталь, часто с добавлением Mn, Ti и других элементов.
Добавка хрома повышает стойкость стали к окислению и коррозии. Такая сталь сохраняет прочность при высоких температурах. Хром входит также в состав износостойких сталей, из которых делают инструменты, шарикоподшипники, пружины.
В 1913 году Гарри Бреарли, экспериментировавший с различными видами и свойствами сплавов, обнаружил способность стали с высоким содержанием хрома сопротивляться кислотной коррозии.

Легированная сталь

Легированные стали кроме обычных примесей содержат элементы, специально вводимые в определенных количествах для обеспечения требуемых свойств. Эти элементы называются легирующими. Легированные стали подразделяются в зависимости от содержания легирующих элементов на низколегированные (2,5% легирующих элементов), среднелегированные (от 2,5 до 10% и высоколегированные (свыше 10%).
Легирующие добавки повышают прочность, коррозийную стойкость стали, снижают опасность хрупкого разрушения. В качестве легирующих добавок применяют хром, никель, медь, азот (в химически связанном состоянии), ванадий и др.
Легированные стали маркируются цифрами и буквами, указывающими примерный состав стали. Буква показывает, какой легирующий элемент входит в состав стали (Г - марганец, С - кремний, Х -хром, Н - никель, Д - медь, А - азот, Ф - ванадий), а стоящие за ней цифры - среднее содержание элемента в процентах. Если элемента содержится менее 1%, то цифры за буквой не ставятся. Первые две цифры указывают среднее содержание углерода в сотых долях процента.Легированные стали кроме обычных примесей содержат элементы, специально вводимые в определенных количествах для обеспечения требуемых свойств. Эти элементы называются легирующими. Легированные стали подразделяются в зависимости от содержания легирующих элементов на низколегированные (2,5% легирующих элементов), среднелегированные (от 2,5 до 10% и высоколегированные (свыше 10%).
Легирующие добавки повышают прочность, коррозийную стойкость стали, снижают опасность хрупкого разрушения. В качестве легирующих добавок применяют хром, никель, медь, азот (в химически связанном состоянии), ванадий и др.
Легированные стали маркируются цифрами и буквами, указывающими примерный состав стали. Буква показывает, какой легирующий элемент входит в состав стали (Г - марганец, С - кремний, Х -хром, Н - никель, Д - медь, А - азот, Ф - ванадий), а стоящие за ней цифры - среднее содержание элемента в процентах. Если элемента содержится менее 1%, то цифры за буквой не ставятся. Первые две цифры указывают среднее содержание углерода в сотых долях процента.

суббота, 30 апреля 2011 г.

Определение марки стали по искре


В условиях мастерских не каждый раз можно организовать поиск стали по окраске или паспорту, из-за того, что часто детали производятся из металла выбракованных деталей или стали, маркировку которой установить невозможно из-за отсутствия паспорта и условной окраски. В таком случае материал выбирают так: если маркировка металла, из которого была произведена деталь, неизвестна, то ее устанавливают пробой на искру. При соединении металла с наждаком исходит искра (частички металла, накаляясь от трения, светятся), которая у разных маркировок сталей бывает различной как по своему цвету (свечению), так и по форме искры.
Кузнецы, которые имеют достаточный опыт и часто прибегают к такому методу определения, довольно верно рассортировывают сталь по примеси углерода (с точностью до 0,2%) и легирующих примесей.
Для установления марки стали по искре нужно обладать наждачным кругой высокой твердости, которому сообщается окружная скорость более 24—25 м в секунду. Чтобы установить, какое число оборотов надо сообщить кругу для установления окружной скорости 25 м в секунду, рекомендуется нужную окружную скорость поделить на длину окружности имеющегося наждачного круга. К примеру, нужная окружная скорость 25 м в секунду, диаметр наждачного круга который есть в хозяйстве 400 мм.
При соединении испытуемой стали с вращающимся с такой скоростью наждачным кругом сталь производит искры длиной примерно 350—400 мм. Чтобы поток искр был неизменным, а их длина равной, надо испытуемый кусок стали прижимать к кругу с постоянно большим усилием на протяжении всего периода проверки, так как неравномерность нажима дает разную искру, вследствие чего определение может быть неверным.

Характеристики нержавеющей стали


Сопротивляемость к коррозии (образованию ржавого налета)
Все разновидности нержавеющей стали имеют высокую степень сопротивляемости к коррозии. Нержавеющие изделия сопротивляются коррозии металла в условиях атмосферы, а также могут противостоять окислению в большем числе существующих кислот, в хлористой среде, в щелочном растворе и даже в при высоких температурах и давлении. Они сохраняют свои свойстви при перепадах температур. При использовании в долгие сроки изделиям из нержавеющей стали не свойственны отслоения и разрывы внешнего покрытия метиза и уменьшение прочности (даже при очень больших температурах). Так же изделия из этого материала сохраняют свою жесткость и при криогенных температурах.
Прочность нержавеющей стали
«Нержавейка» может выдерживать огромные физические давления и вес при этом не изменяя форму и сохраняя свою форму.
Огнестойкость
Даже при воздействии огня крепежные изделия из этой стали не расплавятся.
Красивый внешний вид
В отличие от иных видов стали, изделия из стали с высоким содержанием хрома со временем не меняют своего презентабельного сверкающего вида и не покрываются коррозионным слоем. Поэтому крепеж из нержавеющей стали все чаще предпочитают применять изготовители высококачественных товаров.